If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+1.4x-1=0
a = 1; b = 1.4; c = -1;
Δ = b2-4ac
Δ = 1.42-4·1·(-1)
Δ = 5.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.4)-\sqrt{5.96}}{2*1}=\frac{-1.4-\sqrt{5.96}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.4)+\sqrt{5.96}}{2*1}=\frac{-1.4+\sqrt{5.96}}{2} $
| 22=7+3g | | 51x-153=17(3x-9) | | *x÷40=0.5 | | x4-3x3-4x2+12=0 | | 4m-6=8m-4 | | 5x-8=8x-34 | | -4(n+2)-2n=0 | | y-9÷-2=-1 | | f(0)=5f(3)=5/64 | | 21/2+x=71/4 | | 9x-2=-6x+18 | | -11/3=x/6 | | • 3x-1/4=2 | | 18x=300 | | K=800+30x | | 3(2x+10)=34 | | -6x-18=-12x+42 | | b/2.5=4 | | (60+3x)/9=25/32 | | b/2.5=5 | | |5x|=38 | | x-5=10x+40 | | -3x2-x+2=0 | | 34-x=28-17x | | 2=2(x-50) | | 53×x=159 | | (y)^2-2y=0 | | y-16(y)^2=0 | | 40a+60B=1.3 | | (2/8)+(3/4)=w/5 | | 20=0.5y | | 6x+4=3+9x |